
A COMPUTER MODEL FOR DETECTING AIRPORT LUGGAGE’S 

DIMENSIONS USING LOW-COST DEPTH SENSORS

Vitor de Almeida Silva, Marcos Paulino Roriz Junior*, Michelle Carvalho Galvão da Silva Pinto Bandeira 

Faculdade de Ciência e Tecnologia, Universidade Federal de Goiás 

* Corresponding author e-mail address: marcosroriz@ufg.br

PAPER ID: SIT149 

ABSTRACT 

A factor that impacts airlines’ resources is the verification of luggage’s dimensions during the 

boarding process. To check conformity, companies usually rely on a human operator. To mitigate this 

issue, companies are investing in automatic self bag drop systems. This process introduces new 

technological challenges, since, in this scenario, the verification of the conformity of the luggage 

dimensions is delegated to the passenger, which can lead to errors. In addition, current solutions use 

specific computing devices, such as laser scanners, that are expressive in size and cost, which may 

require interventions in the airport infrastructure. In this sense, this work proposes a model to measure 

luggage through a low-cost depth sensor as an alternative to obtain and verify its dimension. To do 

so, we developed an algorithm that obtains a 3D point cloud of the luggage surface through a 

Microsoft Kinect V2 sensor. After that, we generate the minimum polygon that cover these points, a 

process called convex hull. By doing so, we are able to obtain the luggage’s dimensions. To test our 

approach, we implemented our model in MATLAB and created a real-world prototype. The results 

indicate that the mean absolute error is 1.33cm, 1.90cm, and 0.52 cm for the width, length, and depth, 

respectively, which indicates that this technology has the potential to become an alternative 

technology to detect the luggage’s dimensions. 
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1. INTRODUCTION 

From 2004 to early 2020, the number of 

people using air transport reached 4.723 billion 

(Statista, 2021). In this scenario, the boarding 

time of passengers increased significantly. For 

instance, Ren et al. (2020) study indicate an 

increase from 22 to 40 minutes in boarding time 

for 200 passengers in 1990 and 2009 

respectively. In addition, it is known that the 

boarding process is one of the most time-

consuming factors at airports (Gao et al., 2018). 

These delays result in losses for passengers and 

companies (Qingji et al., 2018). 

Within the boarding process, checking the 

dimensions of luggages is one of the factors that 

consume substantial time (Ronzani & Correia, 

2015; Negri & Borille, 2017). Another factor is 

the congestion formed in the aisle between the 

seats. One of the reasons for this comes from the 

delay in storing luggage by passengers in the 

aircraft top compartments, an action that is 

influenced by their dimensions, quantity, and 

material (Ren et al., 2020). 

To address this issue, airlines have invested 

in automated solutions, which are part of the 

technological advances provided by Industry 4.0 

(Göçmen, 2021).  

Among the solutions, the implementation 

of self-service terminals to speed up the boarding 

process stands out (Colby, 2019; Ren et al., 

2020). This procedure requires technologies that 

allow passengers to check in their own luggage 

(self bag drop). This logic can be applied at the 

entrance, in the waiting area, or along the airport 

(Alsyouf et al., 2018). It optimizes services and 

improves time savings. However, the process of 

verifying the luggage’s dimension falls to the 

passenger, which can generate errors due to the 

format and position of the luggage (Colby, 2019; 

Ren et al., 2020).  

To aid the passenger, airlines have 

explored the use of computer vision equipment 

as a way to detect the luggage size (Anderson, 

2019; Göçmen, 2021). The most common 

technology applied are based on laser sensors, 

which are capable of obtaining information from 

luggage in the form of point clouds (Gao & 

Liang, 2021). These points represent where the 

sensor interacted with the luggage in an R^3 

space.  

From this point cloud, it is possible to 

provide an accurate measurement of the 

luggage’s dimension (Chan et al., 2018). 

However, these equipments can have significant 

costs. Furthermore, in addition to the software, 

they commonly require physical instrumentation 

and modification of the infrastructure for their 

installation, which increases the difficulty in 

deploying or moving it to other parts of the 

airport (Gao et al., 2018). 

Parallel to that, alternative and low-cost 

sensing technologies have emerged as a way to 

analyze an object’s size (Kuan et al., 2019). For 

instance, the Microsoft Kinect, a depth sensor 

developed initially for video games, has 

encountered applications in several other areas, 

including airports (Zennaro et al., 2015; 

Anderson, 2019). This device has been widely 

adopted due to its feature and significantly low 

price (around 200 dollars) (Chan et al., 2018). 

However, there is a lack of study that 

analyzes the usage and limitations of this 

technology for measuring luggages. Hence, 

given this gap, in addition to the inflexibility of 

existing technologies, and their expressive 

prices, this paper proposes a model for detecting 

the luggage size using low-cost depth sensors. To 

do so, the method employs the Microsoft Kinect 

depth sensor and algorithms for analyzing the 

point clouds. To evaluate our method, we 

programmed the approach in MATLAB and built 

a real-world prototype. Our results indicate that 

our model is able to detect the luggage’s 

dimension with a mean absolute error of 1.33cm, 

1.90cm, and 0.52 cm for the width, length, and 

depth. This result indicates that the model has the 

potential to be used in airports.     

The rest of this paper is structured as 

follows. First, Section 2 presents the fundamental 

concepts that underlie this work. Then, Section 3 

presents and discusses the method, while Section 

4 presents the experiment used to evaluate our 

approach. Finally, Section 5 states the conclusion 

and future work associated with the limitations of 

the proposed method. 

2. FUNDAMENTAL CONCEPTS 

To exemplify the challenges in obtaining 

the luggage’s dimension and verifying its 

conformity, we review the boarding process and 

how current technology approaches work. 



 

 

2.1. BOARDING PROCESS 

The boarding process analyzed was based 

primarily on the rules of the Brazillian National 

Civil Aviation Agency (ANAC, 2022), but can 

be customized by airlines. We also considered 

the rules for individual airlines, such as Azul 

(2022) and Gol (2022).  

Passengers’ luggages can be classified into 

carry-on, checked, and special luggage. Carry-on 

luggage are those that the passenger carry to the 

aircraft. According to ANAC, the standard limits 

for these type of luggage is 55 cm, 35 cm, and 25 

cm for length, width, and depth, respectively. For 

maximum weight, the limit is 10 kg. 

On the other hand, checked luggages must 

be dispatched, usually with the airline staff at the 

check-in desk or in a self bag drop machine. 

According to ANAC, the standard limits for 

checked luggage are 55 cm, 80 cm, and 28 cm, 

for length, width, and depth, respectively. And 

for the weight, the limit is 23kg. In addition to 

these issues, wheels, handles and any accessories 

attached to the luggage are also accounted in the 

measurement.  

Finally, special luggages are those that do 

not fit into previous categories. For example, a 

sport equipment or a musical instrument usually 

needs to be dispatched as special luggage. Since 

their shape varies significantly, they are usually 

handled manually by airlines staff. As such, we 

will not address them in this work. 

2.2. METHODS TO EXTRACT OBJECT 

DIMENSIONS  

This is the main body of the article. Use 1 

to 4 sections (e.g., bibliographic review, 

methodology, results, conclusions) This chapter 

is an example of the various chapters that the 

authors can use to report their respective studies, 

including the study methodology, the analysis 

and the final results. 

The first review result indicated a total of 

167 works. After a careful analysis, we found 14 

papers that focus on how to obtain object 

dimensions. Of these studies, only 3 were trying 

to detect the airport luggage dimensions. The 

others acted in otherd domains. Regarding the 

technology, we found out that 7 works used the 

Microsoft Kinect, while 4 used laser scanners, 

and 3 used binocular vision. We highlight that 

none of the works that tried to analyze the 

luggage dimension used the Microsoft Kinect. 

Regardless of the type of the technology 

used to scan the objects, the works are generally 

based on computer vision techniques. According 

to Bhowmik & Appiah (2018), computer vision 

is the process of acquiring, analyzing, and 

processing video and images to make decisions.  

In computer vision, an object’s dimensions 

is usually computed through a point cloud. These 

data points represent the object’s contact points 

with the sensor in an 3D space, as illustrated in 

Figure 1 (a) and (b). Subsequently, a point cloud 

is processed to reduce noise. After that, we can 

compute the object’s dimension by discovering a 

three-dimensional polygon that covers the cloud, 

see Figure 1 (c).  

This entire process commonly employs the 

convex hull algorithm, since it obtains the 

smallest polygon that wraps the captured object 

points (Ding et al., 2018; Gao et al., 2018). To 

exemplify this process, consider the following 

example. Given a set of points A, the convex hull 

seeks to find border points, generating a subset 

B, which in turn represents the smallest polygon 

that covers all points of A. This polygon can be 

used to reproduce the surface of objects or collect 

information from its dimensions (Ding et al., 

2018). Figure 1 (d) illustrates an example of 3D 

convex polygons.  

Concerning the pre-processing step, we 

highlight that it is possible to apply several 

techniques, such as subsampling, clustering, 

segmentation, and filtering. Subsampling 

reduces the density of points, reducing the 

 

 

Figure 1 Process of obtaining dimensions using a depth sensor (Microsoft Kinect) and convex hull 



 

 

computational expense needed to analyze the 

object (Ruchay et al., 2018). Clustering, on the 

other hand, removes outliers that can hinder the 

reconstruction process, since border points can 

significantly change the polygon that delimits the 

3D object. Further, segmentation aims to remove 

outlier points that will not be used in processing 

(Limwattanapibool and Arch-int, 2017). 

As for technologies for capturing point 

clouds, we highlight the usage of mobile laser 

scanners, binocular sensors, and depth sensors, 

such as Microsoft Kinect.  

Laser scanners can be applied in self-

service services. Such equipment is composed of 

a treadmill, an internal environment with lasers, 

and a processing center (Qingji et al., 2018). The 

customer places their luggage on the treadmill 

and the scanner, through the use of sensors, 

returns the dimension values (Gao et al., 2018).  

Airline and airport usually employs this 

type of technoclogy to enable the self bag drop 

stations. However, laser scanners usually have a 

signifcant cost, ranging from USD 10,000.00 to 

USD 111,000.00 for a single sensor. As an airline 

can have multiple self bag drop stations, this can 

be costly. Furthermore, in addition to the 

software, they commonly require physical 

instrumentation and modification of the 

infrastructure for their installation, which can 

make it difficult or impossible to move them for 

other parts of the airport (Gao et al., 2018). 

 Another option is binocular vision 

systems. The technique is inspired by human 

vision, consisting of capturing two or more 

images of the same object at relatively different 

angles by cameras. From this, it is possible to 

form a 3D object and identify its dimensions 

(Qingji et al., 2018). The main disadvantage of 

this method is that the position of the luggage 

directly influences the result, sometimes making 

the method impractical (Gao & Yang, 2013). 

As an alternative to the technologies 

mentioned, researchers have explored the use of 

low-cost depth sensors, such as Microsoft 

Kinect. This device is capable of efficiently 

returning point clouds with high precision (Chan 

et al., 2018). Another attraction is its portability, 

ease of installation, as well as its price, around 

USD 200 dollars (Ruchay et al., 2018). Figure 2  

illustrates the Microsoft Kinect version 2 

components. 

 

3. METHODOLOGY 

The proposed model is based on two major 

phases: sampling strategy and dimension 

extraction. This section presents the concepts of 

each phase. Further, it describes the real-world 

prototype we built to implement the model 

As stated previously, we decided to use the 

Microsoft Kinect v2 depth sensor due to its low 

cost and successful usage in other scenarios 

(Kuan et al., 2019). For implementing the 

algorithm, we used the MATLAB programming 

language due to its community support and 

compatibility with the sensing device. Finally, 

we used an Arduino board to control parts of the 

hardware device. 

3.1. SENSING STRATEGY 

The first step was to choose the sensing 

strategy. Precisely, how are we going to scan 

(sample) the luggage. Considering this task, we 

highlight two options: static sensing, and mobile 

sensing. 

Static sensing consists of positioning the 

sensor at a fixed point and collecting the entire 

point cloud of the object in a single scan. This 

approach was used in works such as Gao & Yang 

(2013) and Qingji, Chuanbo & Qijun (2018), but 

without the use of Kinect. The resulting data 

sample can collect the point cloud in great detail. 

However, as the sizes of luggage can vary, it does 

not cover all cases, such as bags larger than the 

active area. 

 

  

 

 

Figure 2 Microsoft Kinect V2 



 

 

Moving on to mobile sensing, unlike the 

static mode, this approach does not scan the 

object in a single pass. In this case, the system 

sense a slice region, also known as Region Of 

Interest (ROI). The ROI is a segmentation that 

constrains the set of points in a region, as 

illustrated by the red slice in Figure 3. By using 

a sampling step and frequency, the object point 

cloud can be rebuilt.  

The sensor is positioned at a fixed point, 

and the object is moved through its active region 

(ROI). Therefore, it is necessary to carry out a 

more extensive treatment consisting of collecting 

N samples of the object and concatenating them 

all in real-time to form the complete point cloud. 

Equation (1) shows the calculation, where 𝑝𝑖 is 

the new sample taken and 𝑃𝑓 is the resulting point 

cloud. The flowchart illustrated in Figure 6  

represents this approach.   

 

𝑃𝑓 = ⋃ 𝑝𝑖
𝑛
𝑖=0   (1) 

 

The Kinect was positioned at 90° in 

relation to the luggage. This position reduces the 

number of occluded points, increasing the level 

of detail collected, such as handles and wheels. 

To fix the Microsoft Kinect, we built a support 

structure. The sensing device was placed at the 

top, in a glass support from a distance of 1 meter 

from the base.  

A static sensor can be costly, as such, we 

decided to employ a mobile sensing strategy. Our  

approach uses the following steps (illustrated in 

Figure 7). First we choose the input parameters: 

the sampling rate (at which rate the point cloud 

will be captured), and the region of interest 

(location that will be sampled). After choosing 

the initial parameters, we check if there is an 

object between the treadmill and the sensor. If 

positive, we trigger the capture phase.  

In this phase, we capture the entire point 

cloud of the luggage. To avoid handling angled 

data points, we only keep the part of the point 

cloud that is located directly below the Kinect 

sensor (the ROI). For instance, consider Figure 4. 

A lower sampling frequency, such as 1 cm, 

means that every 1 cm the sensor will capture a 

point cloud and keep the points in the middle. 

When joining these points, we get the entire point 

cloud without distortion with a 1 cm precision. 

Notice the gap produced when using a different 

frequency, 5 cm. The holes represent the lack 

data of caused by the delay between each sample. 

 

 

Figure 3.   (a) System Model   (b) System Implementation 

 
Figure 4. A luggage’s point cloud.  

Roi with different sampling rate 



 

 

Finally, after capturing the points we join 

them together and return the luggage’s point 

cloud.  

3.2. PROTOTYPE HARDWARE 

Several electronic components were used 

to build the entire system. Precisely, we used a 

DC motor and an H bridge module to control the 

treadmill. We also employed an Arduino to 

enable user input. Furthermore, we reused an 

existing treadmill to build our structure. The 

structure aims to support both types of luggages: 

carry-on and checked luggage.  

The modeling and simulation of the control 

center circuit were done in Proteus, a system 

designed to build and analyzes circuits. In the 

end,  the physical circuit was placed in a box for 

protection. The developed code allows 

controlling the treadmill through buttons with the 

following options:  

• Control of the direction of rotation, 

clockwise or counterclockwise;  

• Increase treadmill speed.  

• Reduce treadmill speed; 

• Emergency button that stops the 

treadmill. 

 

3.3. DIMENSION EXTRACTION 

ALGORITHM 

According to the data from the systematic 

review, the most used algorithms for extracting 

object dimensions are the convex hull and least 

squares. The least squares method approximates 

the shape of the point cloud to a parallelepiped, 

which provides a measurement that is similar to 

what is done in airport practice. For instance, 

some airport uses an empty box template to 

verify the luggage’s conformity. Altough simple, 

the challenge of this methods lies in the position, 

quantity, and deformation of the luggage. 

We implemented a simplified method that 

uses an axes-aligned minimal box (AABB) and 

the convex hull. This method returns the volume, 

and dimensions faithful to the format and within 

the measurements of a parallelepiped. We 

assume that the luggage has a cuboid shape. After 

that, we aligns the minimum and maximum axis 

to compute each dimension length. Figure 7 

indicates the steps used by our algorithm in a 

flowchart. 

The flowchart in Figure 7 shows that after 

computing the wrapping polygon we extract its 

boundary by analyzing the minimum and 

maximum points at each axis (x, y, and z). Using 

this data, we align them, and compute the 

luggage’s dimension by projecting these limits in 

a parallelepiped. Equation 2, 3, 4, and 5 shows 

this computation. Here, 𝐿 is the length, 𝑊 is the 

width, and 𝐷 is the depth, while ℎ is the sensor 

height value which is a known constant.  

 

𝐿 = (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛) ∗ 100 (2) 

𝑊 = (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) ∗ 100 (3) 

𝐷 = (ℎ − 𝑍𝑚𝑖𝑛) ∗ 100 (4) 

𝑉𝑜𝑙𝑢𝑚𝑒 = (𝐶 ∗ 𝐿 ∗  𝑃) / 1003 (5) 

 
Figure 6 mobile sampling flowchart 

 
Figure 7 Algorithm used to extract luggage’s 

dimension  (AABB + Convex hull) 



 

 

4. RESULTS AND DISCUSSIONS 

To validate the prototype, we conduct tests 

with different luggages and bags. Table 1  shows 

the results obtained for the measurements, as 

well as the root-mean-square error (RMSE) 

returned for width, length, and depth. The mean 

absolute error (MAE) was also included to obtain 

insights into the dimensions individually. For 

each luggage, we executed 10 tests. The values 

presented in our approach are the average 

between the ones obtained in these tests. 

We compare our result to the ground-truth. 

As such, each item is listed in terms of its width, 

length, and depth for the ground-truth (R), while 

our values are marked with (K). The N column 

represents the identifier code of each luggage. 

From the analysis of Table 1, it is possible 

to see that for the L1 luggage, positioned 

horizontally, an RMSE of 0.30 cm was obtained. 

The L2 backpack, on the other hand, obtained an 

RMSE of 1.24 cm. Thus, it is possible to notice 

that there are errors with larger and smaller 

values. This is influenced, in addition to the 

sampling and position of the bag, by points 

slightly shifted due to reflection from the sensor 

when colliding with the bag's surface.  

 

 

Table 1 Comparison between real-world measurements and the ones obtained by our approach 

 

N Luggage 

Convex 

hull and 

AABB 

Real (R) Our approach (K) 

RMSE 
Width Length Depth Volume Width Length Depth Volume 

L1 

  

42.50 50 17.80 0.037 42.58 50.24 17.35 0.0371 0.30 

L2 

  

42.10 55.23 18.50 0.043 42.60 56.98 19.65 0.0476 1.24 

L3 

  

42.50 50 17.80 0.037 42.96 52.04 17.21 0.0384 1.25 

L4 

  

42.10 55.23 18.50 0.043 43.64 50.04 18.29 0.040 3.13 

L5 

  

37.30 51.80 20.10 0.038 38.97 52.88 19.76 0,040 1.16 

L6 

  

41.00 58.01 22.00 0.052 44.71 59.14 21,65 0.057 2.25 

 MAE      1.33 1.90 0.52 0.0027  



 

 

Another fact that corroborates the errors 

is the soft material of the L2 backpack. When 

handled, soft materials can be deformed, 

changing its dimensions. As we conducted 

multiple tests, the L2 luggage was   

repositioned several times, which can possibly 

explain the slightly different results.   

The L3 and L4 tests were performed with 

the bags rotated diagonally. The errors returned 

were 1.25 cm and 3.13 cm respectively. In 

comparison with the results obtained in L1 and 

L2, there was an increase. A possible 

explanation is that the error is due to the 

projection done in AABB. Another issue is the 

difficulty in joining the point cloud caused by 

a rotated object. 

Tests for L5 and L6 returned RMSE of 

1.16 cm and 2.25 cm, respectively. The largest 

absolute error of these measurements occurred 

for the length values, 1.12 cm. By comparing 

the results of L5 and L6 with L1, it is possible 

to notice that the error increases according to 

the luggage size. A possible solution is to 

increase the sampling step and use extra 

filtering methods. 

As for the time spent per measurement, 

the system uses an average of 0.14 s/cm. This 

means that, for example, given a suitcase with 

a length of 80 cm (the largest measure 

according to ANAC for dispatch luggage), the 

system would spend 11.8 seconds. Since the 

measurement time directly influences the 

check-in, it is interesting to make 

improvements to the system to reduce this 

time, such as reducing the time required to 

handle each sample and increase the treadmill 

speed. 

Analyzing all tests, the mean absolute 

error was 1.33 cm for width, 1.90 cm for length 

and 0.52 cm for depth, totaling an average 

absolute error of 1.25 cm. 

5. CONCLUSIONS 

The present work proposed a model for 

detecting airport luggage dimensions using a 

depth sensor. Therefore, a systematic review 

was carried out, which found that the leading 

technologies used in the market are laser 

scanners, binocular vision, and depth sensors. 

The limitations found were the position, 

quantity, and shape of the luggage.  

So, a prototype was built. The test results 

shown in session 4 indicate that the system was 

able to obtain the point cloud and calculate the 

dimensions of the luggage with an overall 

MAE of 1.25 cm. The average time expend for 

measurement is 0.14 s/cm. This indicates that 

the system needs improvements in time 

consuming. These results demonstrate that 

there is potential for using this low-cost 

alternative model in managing airline boarding 

operations and investments. By reducing 

measurement errors, it is possible to optimize 

the use of space on the aircraft and alleviate 

passenger frustrations. 

In next stages of this research, is intended 

to deepen the tests regarding other positions 

and the amount of luggage by measurements, 

as well as explore the impact of handles, 

wheels, and labels on the results. It is also 

intended to explore obtaining the weight of the 

luggage. 
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