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ABSTRACT

The pursuit of stringent targets on operational safety and efficiency in an increasingly complex
aviation system has been driving the development of novel analytics capabilities for more proactive
aviation performance management. Anomaly detection in flight operations data is a prominent ap-
proach to delivering actionable information, as anomalies are often related to critical safety events
or inefficient operations. In this paper, we apply machine learning techniques to aircraft surveillance
data for offline anomaly detection and explanation in approach operations at Sao Paulo/Guarulhos
International Airport (SBGR). First, we build an autoencoder classifier for the automatic identifica-
tion of anomalous approach performance from flight trajectory data. Then, we extend our analysis
with runway configuration and weather information to develop models for anomaly explanation. We
found that the autoencoder classifier was able to detect operationally relevant anomalies, while the
explanatory models provided novel insights about contributing factors to the anomalies identified. We
learned that anomalous flight trajectories are more likely to be associated with landing operations on
runway 27 under wind scenarios, with an increase in the odds ratio of 63% and 48% for tailwinds and
headwinds, respectively. In addition, we also observed a positive association between anomalies and
wind gusts situations.

Keywords: Air traffic management, Aviation safety, Anomaly detection, Trajectory data ana-
lytics, Machine learning.



1 INTRODUCTION

Over the past years, anomaly detection ini-
tiatives with flight operations data, be it air-
plane sensor data or Air Traffic Management
(ATM) system data, have become more promi-
nent, driven mainly by the safety-oriented culture
in aviation and the pursuit of improved opera-
tional efficiency in an increasingly complex and
evolved airspace. Anomalies are patterns on data
inconsistent with the expected behavior (Chan-
dola et al., 2009). They arise in non-normal flight
situations and operations, and they are often re-
lated to conditions that may lead to unsafe scenar-
ios or generate inefficiencies in the airspace. In
this sense, the modeling and discovery of anoma-
lies shed light on hazardous or inefficient oper-
ations and substantiate the development of new
safety and operational policies and practices for
airlines and ATM.

Previous research has mostly focused on the
development of anomaly detection models with
various statistical learning techniques, without
addressing explanatory aspects regarding anoma-
lous situations. On the other hand, the explana-
tion of machine learning models across different
fields has been deemed of significant importance
as a way to provide trust and improved usability
in autonomous decision-making systems (Degas
et al., 2022).

In this paper, we apply machine learning
techniques to aircraft surveillance data for of-
fline anomaly detection and explanation in ap-
proach operations at Sao Paulo/Guarulhos Inter-
national Airport (SBGR). First, we build an au-
toencoder classifier for the automatic identifica-
tion of anomalous approach performance from
flight trajectory data. Then, we extend our analy-
sis with runway configuration and weather infor-
mation to develop models for anomaly explana-
tion. The autoencoder classifier was able to de-
tect operationally relevant anomalies, while the
explanatory models provided novel insights about
contributing factors to the anomalies identified.

This paper is organized in the following
way: Section 2 reviews the related literature while
discussing current gaps, and Section 3 presents
the methodological approach for modeling and
identifying anomalies in our particular case. Sec-

tion 4 presents and discusses the results, and Sec-
tion 5 details the conclusions.

2 BACKGROUND AND LITERATURE RE-
VIEW

2.1. Anomaly detection

Anomaly detection refers to the process of
identifying valid and practically significant data
structures incompatible with a notion of expected
normal behavior. Within flight operations, the
aviation subsystem that deals with the day-to-
day operations of flights, in which the principal
stakeholders are Air Traffic Management (ATM)
and airlines/aircraft operators, anomaly detection
initiatives are often related to the investigation
of safety or efficiency-related issues. In this
sense, the objects of interest are often operation-
wise qualities that interfere in the system behav-
ior, such as aircraft trajectories, from the ATM
standpoint; or the identification of safety-related
events and the unveiling of new hazards in the
case of airlines. Nevertheless, the analytical
techniques are often shared with anomaly de-
tection approaches for condition monitoring and
proactive maintenance of the airframe and engine,
thence we include some of those efforts in our lit-
erature assessment.

The anomaly detection process is fre-
quently classified in terms of the timeframes of
the statistical learning process and model opera-
tion. First, the modeling process itself can hap-
pen offline, when the model training uses histori-
cal data on a batch processing schema, or online,
often referred to as incremental learning, in which
the statistical learning model gets updated as new
data become available without the need to retrieve
the previously used data. Second, the model op-
eration itself can also be distinguished between
the online and offline approaches. For the of-
fline model operation approach, the anomaly de-
tection process happens after the operations oc-
cur. For the online approach, on the other hand,
the anomaly detection process happens in a real-
time, streaming fashion as the operations develop.
Finally, it is possible to have an offline learning
model designed for online model operations, so
as to construct an online/incremental learning ap-



proach that aids in offline model operations.

There are several approaches for formulat-
ing an anomaly detection problem as well as al-
gorithms and techniques suitable for modeling it,
and Chandola et al. (2009) presents a thorough
general review. The anomaly detection problem
does not have a universal solution, applicable to
all cases. In practice, the existing techniques
solve specific formulations of the general prob-
lem (Chandola et al., 2009). Over the literature,
one finds several categories of anomaly detec-
tion methods, models, and tools. Here, we dis-
cuss the methods applicable to our methodologi-
cal approach: reconstruction methods, and isola-
tion methods.

Reconstruction methods rely on models that
learn how to reconstruct normal data. When the
model fails to reconstruct an observation - de-
fined by comparing the reconstruction error to a
previously tuned threshold -, that observation is
considered an anomaly. Autoencoders, a particu-
lar type of neural network architecture, are com-
monly used within the reconstruction methods.

Isolation methods aim at separating an in-
stance from the rest. It measures the susceptibility
of each instance to be isolated, with the anoma-
lies being those more easily isolated, based on the
principle that anomalies are few and different than
normal instances (Liu et al., 2008, 2012). The ap-
proach relies on a binary tree structure that iso-
lates every instance via a recursive and random
partitioning process that generates a path length
metric for isolating each instance. By averag-
ing the path lengths produced by several trees,
one can identify anomalies corresponding to the
shortest paths.

2.2. Anomaly detection in flight operations

One of the first initiatives for anomaly de-
tection applied to the ATM domain is that of
Matthews et al. (2013), in which the authors pre-
sented an approach for discovering operationally
significant anomalies in flight track data gener-
ated from surveillance equipment. It is an exten-
sion of the studies in the Flight Operations Qual-
ity Assurance (FOQA) domain to ATM data con-
ducted by Das et al. (2010), as it leverages the
Multi-Kernel Anomaly Detection (MKAD) algo-

rithm presented by the latter. The algorithm iden-
tified approximately 40 anomalous flights, which
were then further analyzed. Domain experts con-
firmed operationally significant anomalies in 15
of these flights.

A different line of study is that of
Murça (2018), which discusses anomaly detec-
tion via Conformal Prediction for identifying
non-conforming trajectories within the proposed
framework for characterization of air traffic flows
based on flight trajectory data. The Conformal
Prediction model presented better values for re-
call, precision, and F1-score when compared to
K-Nearest Neighbors (KNN) and Gaussian Mix-
ture Model (GMM).

On another approach, Deshmukh & Hwang
(2019) presented TempAD, an unsupervised
learning algorithm that uses temporal logic for
anomaly detection for terminal airspace opera-
tions. It generates normal-flight parameter in-
tervals that are easily interpreted and converted
to natural language. Subsequently, Deshmukh
et al. (2019) leverage the identified normal-flight
parameter intervals and discuss an approach to
identify precursors for the detected anomalies in
surveillance data for terminal airspace operations.
For that, the authors presented a supervised learn-
ing algorithm for precursor detection, Reactive
TempAD.

Another effort is that of Olive & Basora
(2019), which presented a methodology to ana-
lyze flight track data from Automatic Dependent
Surveillance-Broadcast (ADS-B) and identify op-
erationally significant anomalies. The authors ob-
tained the principal flows in the airspace via tra-
jectory clustering and used autoencoders for iden-
tifying anomalies.

While current literature discusses different
scenarios in which anomaly detection is viable
within the ATM context, it still lacks anomaly
explanation efforts that could provide novel in-
sights about contributing factors to the anomalies
identified, in addition to providing trust and im-
proved usability in autonomous systems. Further-
more, with the ongoing development of machine
learning models and techniques, there are still op-
portunities for applying novel or previously un-
explored modeling approaches with proper com-



parison to baseline methods or current practice.
With the unprecedented application of isolation
forests for anomaly detection in arrival trajecto-
ries, we contribute to the exploration of different
modeling approaches for anomaly detection for-
mulations with flight track data, while addressing
their explanation to shed light on potential causal
factors for the anomalies identified.

3 METHODOLOGICAL APPROACH

In this paper, we first conduct an of-
fline anomaly detection learning process based
on flight tracking ADS-B data regarding ter-
minal airspace arrival operations at the Sao
Paulo/Guarulhos International Airport (SBGR).
Then, we augment our analysis with runway con-
figuration and weather information to develop
models for anomaly explanation. In this sense,
our objective is to replicate a scenario in which
the goal is the post-operation discovery of anoma-
lous operations.

For this problem, we use two model cate-
gories for anomaly detection. First, we apply an
Isolation Forest model for the unsupervised dis-
covery of potential anomalies. Then, we train an
autoencoder based solely on the normal flights.
By calibrating an allowable reconstruction error
threshold for normal operations, the model is able
to classify between normal and anomalous in-
stances. Based on the identified anomalies, we
then build the explanatory models based on sup-
port contextual data and obtain metrics of feature
importance.

3.1. Datasets

The flight tracking ADS-B dataset features
10,209 flights between December 31, 2019, and
January 31, 2020, at the Sao Paulo/Guarulhos In-
ternational Airport (SBGR). It presents the flight
information in a time series from which we ex-
tracted the following parameters along with each
flight:

• Record timestamp;

• Latitude;

• Longitude;

• Altitude;

• Speed;

• Whether the record takes place in the termi-
nal manoeuvring area.

Figure 1 depicts the horizontal trajectories
of the analyzed flights.

Figure 1 Horizontal trajectories of terminal airspace
arrival operations at SBGR between December 31,

2019 and January 31, 2020.

The Meteorological Aerodrome Report
(METAR) dataset contains information regarding
winds, gusts, flight rules, presence of thunder-
storms and so forth, for the same period.

To emulate the online model operation after
training, we partition the data set temporally on
the day which results in an approximately 80-20
data split. We use the first portion for training
the anomaly detection models offline and the final
20% for replicating the model usage during real
operations.

3.2. Anomaly detection

Model conception starts with the specifica-
tion of a shared data-wrangling phase, common
to both models. In this case study, we analyze
approach procedures in SBGR terminal airspace,
from 10,000 ft onwards. To ensure data consis-
tency with the desired flight phase and scale, the
wrangling processing subjects the flights through
three filters. First, it narrows down the trajectories
to the subsets within terminal airspace. Second,
we discard all observations previous to the first
instant a given flight reached 10,000 ft. To avoid
climbing flights following a takeoff captured by
the surveillance equipment, we also ensure a min-
imum value for the rate of descent. Finally, to
avoid flights with few samples, we keep only the
flights with more than five observations. The re-
sult of the wrangling phase is a set of flights in the



desired scale and context for the development of
the models.

Unsupervised learning: Isolation Forest For
the preliminary anomaly discovery phase, we
construct an unsupervised model using an Isola-
tion Forest, or iForest. The goal is to obtain an
initial distinction between normal and anomalous
flights. Based on this categorization, the training
process of the supervised model then considers
only the flights labeled as normal.

For the application of the Isolation Forest
model, we calculate summarizing metrics instead
of directly using the wrangled time-series data for
model building. There is thus an extra step com-
prising the transformation of the wrangled time-
series data into the tabular metrics. For each
flight, we obtain the following flight-wise sum-
marizing metrics:

• Specific Total Energy (STE)’s total, aver-
age, and standard deviation;

• Specific Potential Energy Rate (SPER)’s to-
tal, average, and standard deviation;

• Specific Kinetic Energy (SKE)’s total, aver-
age, and standard deviation;

• Total time in terminal airspace;

• Latitude at 10000 ft;

• Longitude at 10000 ft;

• Last recorded latitude;

• Last recorded longitude;

• The total distance flown in terminal
airspace;

• Hour of the day at the entrance in terminal
airspace;

• Hour of the day at the exit of terminal
airspace.

Based on the modeled data, we fit an Isola-
tion Forest with 500 trees. Section 4.1. discusses
the results.

Supervised learning: autoencoder For the su-
pervised learning process, we train an autoen-
coder classifier. Autoencoders are a particular
type of neural network architecture used for learn-
ing representation of data via reconstruction. It

does so by encoding the data into a different fea-
ture space - also referred to as a compressed rep-
resentation - before decoding it back to the origi-
nal space. The underlying assumption in this ap-
proach is that if one successfully trains a model
to reconstruct normal flights only, the execution
of this model in an anomalous flight would result
in a higher reconstruction error, enabling the clas-
sification of the flight as an anomalous instance.

As in the iForest training, the starting point
is the wrangled time-series data. Instead of
constructing summarizing metrics from the data,
however, as performed in the Isolation Forest
model training, the goal here is to use a represen-
tation as close as possible to the sequential data.
Among the parameters available, we select those
representatives of the aircraft trajectory and posi-
tioning: latitude, longitude, altitude, heading, and
speed.

Nevertheless, one of the challenges of
anomaly detection in the aviation domain is the
varying number of samples between each flight.
This property of the data often requires prepro-
cessing steps that resample and reshape the data,
which is the case for the application of the au-
toencoder. Therefore, to unify data dimensions,
we resample the time series of each individual
flight with a fixed number of observations. The
next step is to transform the time series of the four
parameters into a single high-dimensional vector.
To achieve this, we rearrange the data interspers-
edly. Each flight can be represented in the high
dimensional space as a vector of the following
shape:

x = [p0t0
, p1t0

, ..., pnt0
, ..., p0tm

, p1tm
, ..., pntm

]

where n is the number of parameters p and
m is the number of time instances t.

Finally, the data goes through a scaling
process. The scaling process contributes to the
proper assessment of feature importance by the
autoencoder neural network structure. The data is
scaled via the Robust Scaler. It centers the data by
removing the median and scales the result based
on a specified quantile range, making the scaling
process robust to outliers. Since the autoencoder
models the behavior of normal flights, the con-
tamination of the training data set with anoma-
lous flights becomes relevant. The Robust Scaler



is used precisely to tackle these effects of data set
contamination.

The training process of the autoencoder
classifier relies on two fundamental steps. The
first step concerns the development of a suit-
able neural network architecture capable of recon-
structing the data with a low reconstruction error
- in this case, the squared error between the norm
of the actual flight vector and the one predicted
by the autoencoder. The second training aspect
refers to the definition of a reconstruction error
threshold that enables classification between nor-
mal and anomalous instances.

For training a suitable neural network archi-
tecture, we further subdivide the normal data set
- as flagged by the Isolation Forest model - into
training and validation subsets at an 80:20 ratio.

The autoencoder neural network architec-
ture consists of five hidden layers of 500, 300,
2, 300, and 500 neurons, respectively. For each
hidden layer, we use the Rectified Linear Unit
(ReLU) activation function. The neural network
model was built on top of the open-source ma-
chine library scikit-learn, written in Python (Pe-
dregosa et al., 2011). Hyperparameter tuning was
not required as a simple neural network configu-
ration sufficed for reconstructing the normal data.

For defining the reconstruction error thresh-
old, the model performance metrics are evaluated
under the expected operational context. As a ref-
erence, we assume the expected number of daily
flights as 500 and a capacity constraint of being
able to investigate ten flagged anomalies in the
same period. Section 4 discusses the results re-
garding the anomaly detectioin model.

3.3. Anomaly explanation

Based on the class labels - anomalous or
normal - obtained for each flight during model
operation, our next goal is to investigate the re-
lationship between the operational context to the
identified class. For that, we build two explain-
able classifiers (logistic regression and random
forests) that predict the anomalous quality of a
flight, as per identified by the autoencoder, in
accordance to operational information extracted
from METAR data and from the surveillance data
itself.

For each flight assessed during the model
operation phase - hence 20% of the original data
set - we process the corresponding METAR in-
formation to obtain data on visibility, thunder-
storms, flight rules, wind gusts, and cross and
aligned wind components referenced to the run-
way, the latter inferred via the heading param-
eter on the surveillance data set. Based on the
wrangled support data, we explore two supervised
learning classifiers: a random forests classifier,
and a logistic regression classifier. For both mod-
eling approaches, we divide the data set into train
and test subsets for validating the modeling pro-
cess in terms of the model capability of predict-
ing the anomaly class of a flight given the oper-
ational context. Because the anomaly classifica-
tion problem is an imbalanced one, we weigh the
models referenced to the class given the heuristics
proposed by King & Zeng (2001). After validat-
ing the modeling process regarding the accuracy
and recall on the test subset, we fit the models on
the complete data set and explore the explanatory
metrics.

For the random forests classifier, the goal
is to assess feature importance to understand the
operational factors contributing to the model pre-
dictions. We construct a random forests classifier
with 500 trees using a split rule based on the Gini
impurity, maximum depth of 15 and 3 as the num-
ber of predictors randomly sampled as split candi-
dates. Then, we compute the importance metrics
- in terms of mean decrease in impurity for each
feature - and their standard deviations based on
the values of each tree within the forest.

For the logistic regression classifier, we first
augment the wrangled support data with features
regarding the interaction terms between each op-
erational factor. After fitting the model, we then
analyze the coefficients of the independent vari-
ables to assess the changes in the odds ratio for
each operational term.

4 RESULTS AND DISCUSSION

4.1. Anomaly detection model training

The Isolation Forest trained with 500 trees
identified 669 anomalies within the 8073 flights
selected for model training - approximately 8.3%



of the data. Figure 2 presents the two principal
components of the evaluated data, obtained via
Principal Component Analysis (PCA), hued by
the operation category as identified by the Isola-
tion Forest.

Figure 2 Principal components, hued by the operation
category (normal/anomalous).

Based on the flights labeled as normal by
the forest, the autoencoder anomaly detector was
trained. We assess its reconstruction error for the
training and validation subsets, as well as for the
flights flagged as anomalous by the Isolation For-
est, as shown in Figure 3. The figure also shows
that the reconstruction error distribution of the
flights in the training and validation subsets are
similar, indicating the model did not overfit the
data. In addition, there is a statistically significant
difference between the error distribution for the
normal data and the ones labeled as anomalous,
with higher reconstruction error values in the lat-
ter. This indicates that the model did not underfit
the data and learned a distinction between normal
and anomalous instances.

Figure 3 Boxplot of the autoencoder reconstruction
errors.

Performance metric evaluation happens via

bootstrapping. We first calculate the reconstruc-
tion errors for observations in the training, valida-
tion, and iForest-flagged anomalies subsets. Next,
we define a range of candidate thresholds. For
each potential threshold value, we sample, with
replacement, 500 flights and evaluate the num-
ber of flagged anomalies and the value for each
performance metric. Figure 4 shows the results
when experimenting 500 times for each potential
threshold. It displays the value for recall, pre-
cision, F1-Score, and false positive rate (FPR)
for each threshold value. The solid lines rep-
resent the mean value for the performance met-
rics, while each shaded region covers the aver-
age ± one standard deviation. Additionally, the
green line presents the average number of flagged
anomalies per 500 flights, given a threshold.

Figure 4 Autoencoder performance metrics obtained
via bootstrapping in 500 rounds, considering 500
landings per day and processing capacity of k=10

flagged anomalies.

The selected threshold value was the one
that resulted in, on average, ten flagged anoma-
lies per 500 flights - i.e., the analysis capacity in
this proposed scenario. Finally, given this thresh-
old of 3.48, we calculate the metrics of 0.22 for
recall, 0.84 for precision, 0.34 for F1-score, and a
false positive rate of less than 0.01.

4.2. Anomaly detection model operation

For replicating the model usage during real
operations, we use the 20% of the flights origi-
nally set apart and hence did not go through any
processing step during model conception, as dis-
cussed in Section 3.1.

Out of the 2136 flights, the autoencoder
classifier flagged 47 - or 2.20% - as potentially
anomalous, throughout the seven days of oper-
ation. Figure 5 displays the number of flagged



anomalies per day.

Figure 5 Number of flagged anomalies by the
autoencoder during simulated model operation.

Figure 6 highlights the horizontal profiles
of three flights flagged as potentially anomalous
by the autoencoder. We see that the flights are
indeed associated with operationally relevant sce-
narios that can impact safety/efficiency, present-
ing either a holding pattern or multiple landing
attempts. This is reinforced by Figure 7, which
displays the vertical profiles of the same flights
along the 95th percentile region shaded in gray.

Figure 6 Horizontal profile of three flights flagged as
anomalous by the autoencoder.

4.3. Anomaly explanation

To assess the performance of the explana-
tory models, we first consider the confusion ma-
trices as well as the metrics of accuracy and recall.
Table 1 displays the confusion matrix for the ran-
dom forests classifier, with an accuracy of 0.86
and a recall of 0.75. Table 2 displays the con-
fusion matrix for the logistic regression classifier,
with an accuracy of 0.71 and a recall of 0.62. Both
results indicate that the explanatory models were
able to link anomalous situations to the environ-
mental and contextual conditions.

Figure 7 Vertical profile of three flights flagged as
anomalous by the autoencoder.

Table 1 Random forests classifier confusion matrix.

A
ct

ua
l

Prediction

Normal Anomalous Total

Normal 1800 289 2089

Anomalous 12 35 47

Total 1812 324

Table 2 Logistic regression classifier confusion matrix.

A
ct

ua
l

Prediction

Normal Anomalous Total

Normal 1481 608 2089

Anomalous 18 29 47

Total 1499 637

In terms of assessing the contributing fac-
tors for the anomalous scenarios, we first evaluate
the feature importance metrics regarding the ran-
dom forests classifier, as shown in Figure 8. The
cross-component of the wind, the headwind, and
the tailwind values are the top three features con-
tributing to the predictions of the model beyond
the reference dashed line of equally contributing
features.
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Figure 8 Random forest classifier feature importances.

After evaluating the feature importance of
the random forests classifier, we analyze the lo-
gistic regression model coefficients in terms of
percent change in the odds ratio, as shown in Fig-
ure 9. According to the values, we learn that the
anomalous situations are associated with landing
operations on runway 27 under wind scenarios,
with an increase in the odds ratio of 63% and
48% for tailwinds and headwinds, respectively.
In addition, we also see a positive association be-
tween anomalous scenarios and wind gusts and
also thunderstorms accompanied by wind gusts.
On the other hand, flights under Instrument Flight
Rules (IFR) and increased visibility with flights
under IFR showed a reduction in the odds ratio.

20 0 20 40 60
Percent change in odds ratio

Visibility [miles] and Flight under Instrument Flight Rules (IFR)

Flight under Instrument Flight Rules (IFR)

Wind gusts

Headwind and Landing on Runway 27

Thunderstorm with wind gusts

Tailwind and Landing on Runway 27

-16

-5

32

48

55

63

Figure 9 Percent change in the odds ratio for selected
parameters of the logistic regression model.

The constructed pipeline demonstrates its
applicability regarding the objective of post-
operation detection of anomalous approach per-
formance as well as discovery of contributing
factors to anomalies. From the operational per-
spective, the results contribute to the develop-
ment of novel capabilities that can support perfor-
mance analysis and monitoring processes, which
in turn may be used in training programs or aid
in subsequent developments of operational proce-
dures. The pipeline enables efficient highlighting

of flights that deviate from normality. In addition,
it does so without resorting to a previous mapping
of what to look for: operationally relevant scenar-
ios surfaced without the need to resort to heuristic
rules that specify every possible case.

5 CONCLUSION

In this paper, we explored the development
of machine learning models for anomaly detec-
tion and explanation in flight operations trajectory
data based on aircraft surveillance data regard-
ing approach operations at Sao Paulo/Guarulhos
International Airport (SBGR). We considered
first an autoencoder classifier for the identifica-
tion of anomalous approach performance from
flight trajectory data, trained according to normal
flights labeled by an Isolation Forest unsupervised
learner. Subsequently, the analysis was extended
with runway configuration and weather informa-
tion to develop models for anomaly explanation.

The autoencoder anomaly detector was able
to detect operationally relevant anomalies, such as
holding patterns and go-around maneuvers. Ad-
ditionally, the construction of explanatory logistic
regression and random forests classification mod-
els enabled the association of anomalous situa-
tions with operational factors. For instance, we
learned that the anomalous situations are more
likely to be associated with landing operations on
runway 27 under wind scenarios, with an increase
in the odds ratio of 63% and 48% for tailwinds
and headwinds, respectively.

For future work, there is a need for extend-
ing tools that support the evaluation of poten-
tially anomalous flight, such as the explanatory
approach provided in this paper, with the assess-
ment of the indication correctness while aiding
the discovery process of unknown hazards in the
data. Finally, another research direction is the
development of online models for the real-time
identification of anomalies from flight track data.
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